E-mail Data Extraction Using Multilayered Network and binding network

10-701 Course Project

Goal: Unsupervised data extraction

Haw-Shiuan Chang (hawshiuc)

Experiments:

- Classify folder task on Enron e-mail dataset.
- According to time line, first train 100/200 e-mails then test next 100 e-mails in one person's mailbox^[1].

TA: Jayant Krishnamurthy

- On each layer (including BOW)
 - Normalized 1NN classifier
 - 1NN classifier
 - Naïve Bayes classifier

Method (different from the midway report):

Assumption:

If two words appear in one sentence, they must be somehow related.

• Can we get more information from an e-mail than bag of word?

• Dealing with an article, human learn more abstract features (say,

meaning of sentences or paragraphs). Can we do that on machine?

Algorithm:

For each sentence

```
For layer(i), activate layer(i+1), clamp off units with activation < t
if( =unit j in layer(i+1) covers 80% new sets in layer(i) )
    update w<sub>j</sub> from i to i+1 // freq words have less weights
else Reuse weights like human being
    clamp on a new unit and update its weights
end // we keep the (activation value of last sentence)*0.2
// meaning of coverage is the number of words biased by weights
• For each paragraph, we treat each "sentence group" as a "word"
```

Application:

Data extraction, Point indicator, (Object recognition?)

Drawback:

Very time consuming

Results (error rate):

Train 100, t=0.05	BOW	Sentences	Sentences group	Paragraph
Normalized-1NN	0.89	0.86 -> 0.76	0.86 -> 0.80	0.84 -> 0.85
1NN	0.77	0.74	0.83	0.92
Naïve Bayes	0.78	0.76	0.83	0.89
Dimension	6093	12109	14172	2113

Note that minimal error rate is 0.5

Train 200, t=0.1	BOW	Sentences	Sentences group	Paragraph
Normalized-1NN	0.68	0.70	0.71	0.72
1NN	0.66	0.62	0.66	0.72
Naïve Bayes	0.73	0.69	0.70	0.79
Dimension	7998	20102	22911	3227

- Note that minimal error rate is 0.22
- Note that decrease t will increase the computational time and performance, so only the results from the smallest t are shown here

Reference:

[1] Ron Bekkerman, Andrew McCallum, Gary Huang: Automatic Categorization of Email into Folders: Benchmark Experiments on Enron and SRI Corpora