
[Supplementary Material]
Simple-to-Complex Discriminative Clustering for

Hierarchical Image Segmentation

Haw-Shiuan Chang and Yu-Chiang Frank Wang

Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

1 Proof of Probabilistic Interpretation

We now prove and detail why, in our proposed segmentation framework, solving the
graph-based optimization at each level l in our hierarchy is equivalent to the maximum
likelihood estimation (MLE) of the observed P l(X) (note thatX represent the observed
image features). To be more specific, we need to verify that:

(I) Minimization of El in (8) (of the main paper) is effectively maximizing the log-
likelihood of P l(X).

(II) The above process is equivalent to the fitting of features observed from superpixels
at the bottom level using the clusters determined at level l.

To prove (I), we need to relate the minimization of El() to the MLE for the log-
likelihood of P l(X). In other words, the following relationship needs to be verified:

− log(P l(X)) ∝ El(msp) = ED(msp) + λEl
S(msp), (1.1)

where msp denotes the labeling vector for all superpixels collected at the bottom level.
The functions El(), ED() and El

S() are the total energy, data, and smoothness terms,
respectively (see Sect. 2.3).

As noted in Sect. 2.4, P l(X) is the likelihood of the observed image features given
the clustering outputs at level l. For image segmentation, the superpixels are not ex-
pected to be independent to each other. Thus, we decompose P l(X) in (1.1) as

P l(X) =
∏
ps

P (xps)
∏
ps,pq

P l
Contour(ps, pq), (1.2)

where ps and xps
represent the superpixel and its observed feature, respectively. Note

that P l
Contour(ps, pq) denotes the contour probability between consecutive superpixels

ps and pq , and (1.2) is (9) of the main paper.
To calculate the likelihood P (xps

) in (1.2) using the clustering outputs determined
at level l, we have P (xps

) =
∑

y P (mps
= y)P (xps

|mps
= y), where mps

= y indi-
cates that superpixel ps belongs to cluster y (among K × r clustering outputs at level
l). For simplicity, we have P (mps = y) = 1 if cluster y contains superpixel ps, and
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0 otherwise. Recall that we advance color, texture, and locality cues for describing im-
age superpixels. Under the assumption of equal priors, we can rewrite P (xps

|mps
) as

P (xps |mps) ∝ PColor(mps |ps)wCPText(mps |ps)wT PLocal(mps |ps)wL , wherePColor,
PText, and PLocal are the likelihoods observed for each feature, which are weighted by
wC , wT , and wL (scaled by λ), respectively. Taking the negative log-likelihood over
all superpixels, we see that − log(

∏
ps
P (xps

)) is equal to the data term derived in (8),
except for segment s is now replaced by superpixel ps.

On the other hand, the contour probability in (1.2) is P l
Contour(ps, pq) = P (mps

=
mpq

)P l
Contour(ps, pq|mps

= mpq
) + P (mps

6= mpq
)P l

Contour(ps, pq|mps
6= mpq

),
where mps

= mpq
and mps

6= mpq
indicate the cases when superpixels ps and pq

belong to the same and different clusters, respectively. Similarly, we have P (mps
=

mpq ) = 1 if mps = mpq , and 0 otherwise. When mps = mpq (i.e., two superpixels be-
long to the same cluster/segment), we should neglect the contour evidences between two
superpixels. Therefore, we set P l

Contour(ps, pq|mps
= mpq

) = 1, and the negative log-
likelihood of the

∏
(ps,pq)

P l
Contour(ps, pq) will be− log(

∏
(ps,pq)

P l
Contour(ps, pq)) =∑

(ps,pq)
1(mps 6=mpq )

(−log(P l
Contour(ps, pq|mps

6= mpq
))), where 1() is the indica-

tor function. Notice that it has exactly the same form of the smoothness term El
S(msp)

in (8) (except for operating at the superpixel level). Based on the above derivations
for (1.1), the proof for (I) is complete, and we successfully verify that minimizing the
proposed El in (8) is effectively maximizing the log-likelihood of P l(X).

To prove (II), we need to show that El(m) which we minimize over the segments
at level l is effectively the energy term El(msp), observed by the corresponding super-
pixels at the bottom level using our clustering results determined at level l (and scaled
by a constant). In other words, our goal is to prove:

El(m) ∝ El(msp), s.t. ms = mps
,∀ps ∈ s. (1.3)

To verify the above relationship, we need to associate each feature cue observed at seg-
ment and superpixel levels. For color cues, assuming that the color features derived
for each pixel are independent, the probability of superpixel ps belonging to clus-
ter ms will be the product of probabilities that every pixel in ps belongs to ms, i.e.,
PColor(mps |ps) =

∏
p∈ps

∏
c Pc(ip|mps

) (as determined in (2) of our main paper, and
c is the index of color channels).

By multiplying PColor(mps |ps) of all superpixels ps in segment s, we effectively
obtain Pc(ip|ms) over all pixels p in that segment, which indicates the pixel-level prob-
ability of segment s belonging to cluster ms. More precisely, with ms = mps

, we have

PColor(ms|s) =
∏
p∈s

∏
c

Pc(ip|ms) =
∏

p∈ps,ps∈s

∏
c

Pc(ip|mps
) =

∏
ps∈s

PColor(mps
|ps).

(1.4)
Note that we drop the scaling factor for simplicity. Similar to the color features, we
apply our definition for textural features in (4) and derive the same probability to the
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textural features as:

PText(ms|s) =
∏
t

∏
i

Pt(i|ms)
wt

∑
ps

P (i|ps)
P (s|ps)P (ps)

P (s)

=
∏
ps

PText(mps |ps)
P (s|ps),

(1.5)
where t and i is the index of textural channels and the index of bins in textural his-
tograms, respectively. As for the locality features, we have PLocal(ms|s) =

∏
ps∈s

PLocal(mps
|ps) (and can be calculated by (6) and (7)).

We note that, P l
Contour(s, q) is the product of contour probabilities P l

Contour(p) of
all pixels p along the boundary between segments s and q, and the values ofP l

Contour(p)
for all pixels along the same boundary will be the same. Thus, we haveP l

Contour(s, q) =
P l
Contour(p)

|(s,q)|, where |(s, q)| is the length of the associated boundary between seg-
ments s and q. For superpixels ps (of segment s) and pq (of segment q), the contour
probability is calculated by P l

Contour(ps, pq|mps
6= mpq

) = P l
Contour(p)

|(ps,pq)|,
where |(ps, pq)| is the length of boundary between superpixels ps and pq . From the
above derivations, we have

P l
Contour(s, q) = P l

Contour(ps, pq|mps
6= mpq

)
|(s,q)|

|(ps,pq)| , (1.6)

which is corresponding to the smoothness term determined in (8). Note that we ignore
the normalization terms in the above derivations, since they could simply viewed as
constants in our energies during the optimization.

With the above derivations and (8), we successfully relate the energy terms observed
at the segment and superpixel levels (i.e., El(m) and El(msp)). In other words, by
proving (1.1) and (1.3), we verify that our segmentation effectively fits the features
observed from superpixels at the bottom level using the clusters determined at level l.


