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® The three most important
problems in computer
vision are:

1. Registration

2. Registration o [ lEeEs [naie

Carnegie Mellon University.

3. Registration

This slide comes from Atrtificial Intelligence course (15381) at CMU in Fall 2010


http://www.ri.cmu.edu/person.html?person_id=136

Registration type

Images

Scene to scene

Object to object

o Classification /clustering /detection methods

Space to space

o Geometry-based methods

Point to point

o Descriptor-based methods
Video

Region to region

o tracking methods

Point to point

o Optical flow /stereo matching



Optical flow problem

- Middlebury Benchmark [Baker et al. 07
- Dominant Scheme: Coarse-to-Fine Warping

This example comes from Motion Detail Preserving Optical Flow Estimation CVPR talk




Application - Segmentation
@ Motion segmentation @ Video segmentation
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Efficient Hierarchical Graph-Based

Layered Representation of Motion Video using Video Segmentation, CVPR 2010
Robust Maximume-Likelihood Estimation of Mixture :
Models and MDL Encoding, ICCV 1995
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Object Segmentation by Long Term Layereo! Segmentgtion and Optical Flow
Analysis of Point Trajectories, ECCV 2010 Estimation Over Time, CVPR 2012



Application - Retrieval

Motion synthesis via Novelty/background separation

Auto morphing moving objects transfer

I've been
here before!

" \ Qury Image
SIFT Flow: Dense Correspondence across Multi View Registration for
Scenes and its Applications Novelty/Background Separation

PAMI 2011 CVPR 2012




Application -
Detection-Free Multiple Object Tracking

Optical Flow -> point trajectory -> motion cue
Motion cue + saliency cue + spatial cue = tracking

Video Segmentation by Tracing Discontinuities in a Trajectory Embedding CVPR 2012



Challenge - Optimization

Dense match
High dimension optimization problem
Local ambiguity / aperture problem
Highly non-convex minimization 1y example comes from

Large d|Sp|acement Freiburg-Berkeley Motion
Segmentation Dataset
Large search Space (FBMS-59)

Non-linear optimization problem




Challenge - Changing features

Non-rigid motion ==y =]

Scale change ——— s
Nang - r

Occlusion o\

lllumination change

Motion blur LE -~ '

Noise

Unlike tracking, the state-of-the-art optical flow
methods still couldn’t deal with too complex
cases.

However, it Improves a lot recently.



Optical flow development track -} 198
Determining
The Robust Estimation of Multiple Motions: Parametric and Piecewise-
Smooth Flow Fields
A PDE Model for Computing the Optical Flow \
Segmentation-Based Motion with s Using Graph-Cut — 1996
lants

Optimization
-Robust Variational Optical Flow with Photometric IQvar
Efficient MRF Deformation Model for Image Matchin +— 1999
Fusionflow: Optimization for Optical Flow
Estimation
SIFT Flow: Dense Correspondence across Difference Sce
Optical Flow Estimation on Coarse-to-Fine-.Region-Trees using — 2006
Optimization

Optical Flovv/u/

— 2007

— 2010

Optical Flow Computation without-Warping : 2008
Motion Detail )Preserving Optical Flow Estimation ( T 2009
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Traditional optical flow
objective function

® Define

* WXy, )=(ux,y.t) , vix,y,t) ,1)
* X y0=(xyt) y By

O E(W):ED(W)+GES(W) pixel u(2,1)

9002999

: :Hn 0z00009

framt. ')"... “.i....

This figure comes from “Motion
= Z (/(Xo +u(x0,y0 ’to ), y+v(x0,y0 ’to ), to+1) coherent tracking with multi-label
MRF optimization”, BMVC 2010
Xo.Y,



Data term linearization

In order to make objective function become convex, we can
linearize the data term.

However, this approximation only hold when u and v are small.
Eo (W)= > (1(X+W) —1(X))’

X0,Yo

= > (1(X+U(X0,Y0:t0)s Y+HV(X0,Yo:t0)s to+1) — 1(Xo, Vo, 1))

X0:Yo

= X%)o[%(x)u(xo,yo,to)+%(x)v(xo,yo,to)+ (X +(0,0,l))—I(X)j

when u(X,, Yo, t), V(Xy, Yo, ty) 1s small

For fix t=t,+1, 1(X,+U(X,,Y0), Yo +V(Xs.Y,)) =

I(Xo’yo)"‘[%(xo’yo) ﬂ(Xo’YO)][U(XO’YO) V(Xo’yo)]T"‘

oy
ol ol
1 axox o Yo) OXOY (Xo: ¥o) u(Xo.Yo)
E[U(Xo’yo) V(Xo’yo)] ol 5] V(X y ) a
. (X5, ¥Yo) (X0:¥Yo0) 010

OyOoX oyoy

How about when u and v are large?






The Multi-scale problem

Ground truth Ground truth Ground truth



The Multi-scale problem

= mF.,u

Ground truth Ground truth Ground truth
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Ground truth
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./

Estimate

Ground truth
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Estimate
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Ground truth
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This example comes from Motion Detail Preserving Optical Flow Estimation CVPR talk



Motivation

@ Unfortunately,
objects moving
fast are often
small in this word,
and when

e Local motion >
own structure

e The moving part
disappears due to
the coarse-to-fine
matching.

Overlap coarse- LDOE
input to-fine
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Descriptor match

® Globally optimize:

Egesc(W1) = / 0(x) |fa(x + wi(x)) — fi(x) 2 dx

® Type
o SIFT?
* Region? -
 HOG(histogram of oriented gradients) or GB(geometric blur)?
® Pros:
* No distance constraint
@ Cons:
e Qutlier from complex scene or occlusion
» Sparse discrete match
e Limited for changing features

Baseline  HOG
Can we combine the with the



Objective function

Conventional: E(W)=Ej(W)+ a Eg(W)

LDOF: E(W):Ecolor(W)+VEgradient(W)+GEsmooth(W)
+B match(W W )+Edesc(W1)

UOON £ (w) = [ W (Ty(x + w(x)) = T (x)[2) dx | Egraa(w) = [ U ([VIa(x + w(x)) — VI;(x)[?) dx
JQ J0

E*._um:u:rth[:“'r} — / v (|\_'u{‘{ | + |\_'v[\ | } dx
J 00

Es(W)
Descriptor FEaesc(W1) = / 0(x) [fa(x 4+ wi(x)) — i '[‘(H“' dx Loss to deCI(_je Wl(x)

match W, (X): descriptor match result
constraint

Ermaten(W) = / JEEINAGUEIRRSICIIDREY | oss to make W close to W,

= robust penalty function
(s | quadratic, s 1 linear)
f(x): the feature space of descriptor

O(x): indicate match function
p(x): confidence of descriptor match




Optimization process

Descriptor match to globally optimize W,
Graduated non-convex optimization
One hard problem (non-convex, non-linear)

Coarse-to-fine + Linearization

Many easier sub-problems(convex, linear)
Discretize

Why still could be “linearize™?
Why still using “coarse-to-fine”?
Why continuous model?
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Middlebury benchmark
(1JCV2011)

@ In optical flow problem, ground truth is hard to get.

@ This benchmark uses
* High speed camera
* Fluorescent
» Synthetic scene

Basketball frame 0 Basketball frame 1 GT interpolated frame

Yosemite frame 0 Yosemite frame 1 Yosemite GT flow




Price of large displacement

There is I v. i | 77
large
displacemen
In Middlebury
datasedt.
Average
endpoint error
Conventional
baseline(2004) 0.501
LDOF(2009) 0.561

Learning Flow [11]
renFInw [45]




Comparison between chosen

d eSC Il pto f No large displacement
Region match is too sparse. D |

GB has more correct and
wrong match.

HOG iIs more efficient.

TABLE 1

Large displacement occurs

Region HOG GB



Comparison with only use
descriptor match

® LDOF Is more
accurate and can
deal with occlusion
and ambiguity In
smoothly textural
areas.

Baseline LDOF

Baseline LDOF SIFT flow



Experiments on video with large
displacement-1

°



http://lmb.informatik.uni-freiburg.de/research/opticalflow/

Experiments on video with large
displacement-2

®



http://lmb.informatik.uni-freiburg.de/research/opticalflow/
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Conclusion

Investigates how to combine
o Descriptor match

o Classic coarse-to-fine method to optimize
continuous energy function.
(Variantional model)

LDOF becomes the first successful
algorithm which deals with small scale
njects with large movements.

O
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Descriptor match-

Region match

Segmentation method: gPb-owt-
ucm

Normalize to 32x32 patch

Find 10 nearest patch
SIFT + corresponding color feature
Filter out:
o Too large displacement
o Too large scale change

Perform local deformation by
conventional optical flow and
select 5 nearest patch (or only
best match)

Backward check

0.362 0373 0.633 6660 0716 0.733 0.765 0.904 0.912 0.921

305 481 497 499 535 685 830 10.51 1213 23.24

@S{fﬂﬂl‘

1.04 172 441 475 501 569 6.83 813 884 11.87

Figure 4. Nearest neighbors and their distances using different
descriptors. Top: SIFT and color. Center: Patch within region.
Bottom: Patch within region after distortion correction.




Descriptor match-
HOG & GB

efficient when using
Integral images

HOG
15 bins, 7x7 neighborhood
135 dimension for each point  [EGEEZEE R “Ltdé -
match from 1/16 points to all > Good selecton o
pOi nts (elliptic point

Filter out points with no This figure comes from Computer Vision
structure (smaller L<1/8 )\ ave course (16720) at CMU in Fall 2010

of VIVI) T [ Te [ [
Backward check el [ [ [ [ e |
EREEEEE

GB DEREINERN
_ _ FiEVAERNEN

15 bins, gaussian
neighborhood with ¢=0,1,2

195 dimension for each point




Domain and range

Vector v(el

Discrete to Discrete optimize problem

o MRF, CRF, Belief propagation, dynamic
programming, Greedy search

Discrete to Continuous optimize problem
o Closed-form solution
o EM algorithm :
o Gradient descent v()E R
(O
Function
Continuous to Continuous optimize problem
o Euler-Lagrange equation
In optical flow case,
different types of variable: different advantage

The vector one: sharp edge f(x)€ R Subpixel

The function one: subpixel accuracy

€]

accuracy

€]

XE R



Variational model

Calculus of variation(& 77 £)

Finding a function which maximizes or
minimizes a functional (objective
function)

o solving a partial difference equation
VS
find maximum of functional

o !
o solving the equation VS
maximize a function

For example, finding the
with smallest length on one
surface.

Optical flow case
Find the

which fit two
frames best

pixel
Flow array

/ ko = /
= s V.

X direction flow vy direction flow
Flow field



Why still could be

“Linearize”?

| e -

AT
y. =

k=kqo+1 Wkt kekg Wk

® Fine pyramid scale (0.95 in this
paper)
o duk, dvk small enough.

® Linearize on du,dv instead of u, v:

(X + W) —1(X) = I(X + W  +dW ) = 1(X)
= 1(X+ W) — I(X) + I,du” + I{dv"

Assume k=layer number
k=1

k=k, /4 #
k:ko+1 é{" k;;

-/-
-

. -
o —
/ "
. - ,.' "

W ko+1 _ (U k0+1,Vk0+1)
=W +dw
= (u'*, V) +(du®, dv*)

W kO +1 2
yZm



Why still using “coarse-to-fine”?

For large structure, the coarse-to-fine technique
IS more accurate than descriptor match.

For small structure:

wa -

g 2 | = '

i = i ] ideawk
Wk+1

h o

e
° move distance > size scale
A £ . Correct descriptor match Ideal dWX is too large to be found
ideal Awk
Wk+l
A WK
< |deal descriptor match W

Wkl r‘ Ideal dWk become much smaller
Wk



coarse-to-fine example with large
displacement

@ In coarse layer, the
detail has been
smoothed away.

® So it shows the
result of descriptor
matches on the feet,
racket and some .
outlier on
background.




Why continuous model?

We have to discretize in the end, why don’t
we discretize it at the first place?

traditional discrete objective function:

EW) = 2xy E(u(x,y,to), v(x, ¥, t))
continuous objective function
(variational model):

E(W) = f j E(u(x,y, to), v(x, 9, to))dx, dy

In the coarse-to-fine optimization process,
Discrete objective function can’t see the

subpixel accuracy difference until the finer level.

The decision of coarse level will significantly
affect the fine level.

Lost are different
But the discrete objective function can’t see the difference

Lost=0.29
v Y
Ve &%
vs ¥ ¥

Lost=0.29



Optimize process

E [.“r} — Ec:j]:jr [“r} + "-;r"E,gra.dir:nt. { w } + aF smooth {“7}

‘I_.SEmat-ch [.I:“'r: Wi } + Edc:sr: [.I:"W] }1

d

Euler-Lagrange equation: ZeRomaORIORS

+5p W { (u—u)? + (v —1 }3} (w—uqp)

e (112 L 12Y ) [ I, = UII.:(‘{ +w) oy = {fll,yfg(:x +w)
adiv (P ( IVul + |V ) \_.'u.._] 0 I = o L(x 4 w) o T w)
I.:=DL(x+w)—Ii(x) L =01,

v’ {If } I, I-y T '-:f"lllf {If: + Iﬁ: } {ITyIII -+ I'yyfy.:?: } I, = 0,.1(x '—I— w) J , = 0,1,.

+8p Y ((u—u)? + (v —v1)?) (v —vy)

—adiv (V' (|Vul? + |Vv|?) Vo) =0,




1 = 1(X+ W) = 1(X) = I(X + WK +dW*) - I(X)

Kk k Kk k Kk k k k k k
=1(X+W?")+ 1 du” +1.dv" —I(X) =1, + L du” + 1. dv

It is like to warp image2 according to the W* at every scale,
and compute flow between wrapped image2 and imagel

kg ko Ry kg k kg ko pk\2)
E®(du”, dv™) = i W ((I7du” + [do™ +I7)7) dx WIS + Ihdd + TEdo®) + BpWh(u* + du® — up)
LY k B

. +9 b duF 4 TF doF)
ko kL oth ok L 7k \2) e L w
—|—’_.[ U (15, du + Iy, do™ +17.)%) dx ¢ dut 4 IE dvk)

y TR Yy

Wy =0 ((IF + IFdu® + TFdo*)?)
—adiv (IIJ;'\_'{u" +du¥)) =0

_ Ol = ' ((Ik, + IF du* + I,
((IF,du® + 1F,d* + 1E,)%) dx

+(IF, + I, du® + If;udvi)“']
= U (P 4 duf —up)? + (0P +doF —v1)?)
V) = 0 (|V(uF +du®)? + |V (0" + do®)?) .

lIf’II;f (IR + Iifdu‘i"' + I_;fd"t.‘k_} + ;L:'\‘p‘IJé{::‘sz + dvk — g )

k B ook o gk gk

kg k 2 kg k 2y . w L du® 4 17 du”)
u® + du” —uy)” + (0¥ +dvt —w dx TE T Ty

((- 1) ( 1) ) ko IE dub 4 IE dot)

yz
:‘D;V{:vk + dl'I‘H =0

+a/ \p (lV(U'I‘ + r_‘]'uk)‘g + |V(?'I‘ + t{t'k:)lg) . —adiv (
194 |

Ek is convex and can be globally optimize.

By making many assumptions and approximations at the coarse-
to-fine step.

follow the spirit of graduated non-convex optimization.
If we don’t use continuous model

How to discretize the equation at each scale without introducing
any inconsistent discretizaion artifact?

the relationships between flows on each scale are undefined...



Advantage

Relatively simple, robust and fast

Provide source code of optical flow and GPU
accelerated version code for finding point
trajectory.

For 640x480 image:143s (CPU version) ->
1.84s (GPU version) suitable for video usage.

Point trajectory derived from this method
Induces or refines some new motion segment
and multi-object tracking techniques.




Disadvantage

The most important disadvantage:
LDOF directly incorporate the match result

of descriptor into the energy function.

Descriptor match can’t be perfect:
Introduce the bias of energy function

Descriptor match can provide the possible
optimize direction, but we have to choose the
best result only according to unbiased energy
function.

o This concept is realized by “Motion Detall
Preserving Optical Flow Estimation PAMI 2012”

Achieve the best result in Middlebury evaluation set and
also with ability to deal with large displacement.



Disadvantage

The descriptor match process doesn’t merge
Into optimize process and biased energy
function, so in order to

1. suppress the false match result

2. reduce the false flow caused by occlusion near
large displacement

3. reduce the Local Ambiguity / Aperture problem

It needs to increase the weight of smoothness
term(a). It brings about two problems:

1. Blur image boundary

2. When background is close to the foreground, the
smallest cost will become staying at the same
position without any moving.



Disadvantage

@ Although trying hard to suppress,
there are still some of them can't
be compensate.

Motion blur False match Smooth surface

Blur boundary

Remain at the
same position



